DOI:
10.37988/1811-153X_2025_2_26The quality of diagnosis of hidden carious cavities according to CBCT research by dentists in comparison with artificial intelligence
Downloads
Abstract
This article compares the diagnostic quality of three groups of dentists with different work experience and different specialties using an artificial intelligence (AI) system. The study proceeded in several stages: 1) studying AI systems used in dentistry; 2) selecting a patient and conducting clinical and X-ray examinations with subsequent processing of the obtained AI data; 3) conducting research among dentists of various specialties and work experience; 4) comparing the results obtained with AI. The “Diagnocat system” (Russia) was selected for the study and an X-ray report of a pre-selected image was performed (which was suitable based on the results of a clinical examination and X-ray analysis by a dentist and AI analysis), dentists were asked to study this CT scan (a program was provided to view the image in three-dimensional image) and clinical photographs of the patient, then The responses of 60 dentists were analyzed. Cases of overdiagnosis by dental doctors have been identified, which tells us about a medical error that can be eliminated when using AI. According to the study, patients who come to a dentist-therapist with 5 to 15 years of work experience receive a better diagnosis.Key words:
artificial intelligence, dentistry, diagnostics, image analysisFor Citation
[1]
Lavrenyuk E.A., Vagner V.D., Mironov M.V. The quality of diagnosis of hidden carious cavities according to CBCT research by dentists in comparison with artificial intelligence. Clinical Dentistry (Russia). 2025; 28 (2): 26—29. DOI: 10.37988/1811-153X_2025_2_26
References
- Dhopte A., Bagde H. Smart smile: Revolutionizing dentistry with artificial intelligence. Cureus. 2023; 15 (6): e41227. PMID: 37529520
- Turosz N., Chęcińska K., Chęciński M., Brzozowska A., Nowak Z., Sikora M. Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews. Dentomaxillofac Radiol. 2023; 52 (7): 20230284. PMID: 37665008
- Bilgir E., Bayrakdar İ.Ş., Çelik Ö., Orhan K., Akkoca F., Sağlam H., Odabaş A., Aslan A.F., Ozcetin C., Kıllı M., Rozylo-Kalinowska I. An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med Imaging. 2021; 21 (1): 124. PMID: 34388975
- Revilla-León M., Gómez-Polo M., Barmak A.B., Inam W., Kan J.Y.K., Kois J.C., Akal O. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. J Prosthet Dent. 2023; 130 (6): 816—824. PMID: 35300850
- Tiwari A., Gupta N., Singla D., Ranjan Swain J., Gupta R., Mehta D., Kumar S. Artificial intelligence›s use in the diagnosis of mouth ulcers: A systematic review. Cureus. 2023; 15 (9): e45187. PMID: 37842407
- Aminoshariae A., Nosrat A., Nagendrababu V., Dianat O., Mohammad-Rahimi H., O’Keefe A.W., Setzer F.C. Artificial intelligence in endodontic education. J Endod. 2024; 50 (5): 562—578. PMID: 38387793
- Ilhan B., Lin K., Guneri P., Wilder-Smith P. Improving oral cancer outcomes with imaging and artificial intelligence. J Dent Res. 2020; 99 (3): 241—248. PMID: 32077795
- Sultan A.S., Elgharib M.A., Tavares T., Jessri M., Basile J.R. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J Oral Pathol Med. 2020; 49 (9): 849—856. PMID: 32449232
- Liu J., Chen Y., Li S., Zhao Z., Wu Z. Machine learning in orthodontics: Challenges and perspectives. Adv Clin Exp Med. 2021; 30 (10): 1065—1074. PMID: 34610222
- Hung K.F., Yeung A.W.K., Bornstein M.M., Schwendicke F. Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol. 2023; 52 (1): 20220335. PMID: 36472627
- Boztuna M., Firincioglulari M., Akkaya N., Orhan K. Segmentation of periapical lesions with automatic deep learning on panoramic radiographs: an artificial intelligence study. BMC Oral Health. 2024; 24 (1): 1332. PMID: 39487404
- Bayrakdar I.S., Orhan K., Çelik Ö., Bilgir E., Sağlam H., Kaplan F.A., Görür S.A., Odabaş A., Aslan A.F., Różyło-Kalinowska I. A U-net approach to apical lesion segmentation on panoramic radiographs. Biomed Res Int. 2022; 2022: 7035367. PMID: 35075428
- Çelik B., Savaştaer E.F., Kaya H.I., Çelik M.E. The role of deep learning for periapical lesion detection on panoramic radiographs. Dentomaxillofac Radiol. 2023; 52 (8): 20230118. PMID: 37641964
- Endres M.G., et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel). 2020; 10 (6): 430. PMID: 32599942
- Patil S., Albogami S., Hosmani J., Mujoo S., Kamil M.A., Mansour M.A., Abdul H.N., Bhandi S., Ahmed S.S.S.J. Artificial intelligence in the diagnosis of oral diseases: Applications and pitfalls. Diagnostics (Basel). 2022; 12 (5): 1029. PMID: 35626185
- Shan T., Tay F.R., Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021; 100 (3): 232—244. PMID: 33118431
- Szabó V., Szabó B.T., Orhan K., Veres D.S., Manulis D., Ezhov M., Sanders A. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs. J Dent. 2024; 147: 105105. PMID: 38821394
- Ezhov M., Gusarev M., Golitsyna M., Yates J.M., Kushnerev E., Tamimi D., Aksoy S., Shumilov E., Sanders A., Orhan K. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep. 2021; 11 (1): 15006. PMID: 34294759
- Choi J.W., Park H., Kim B S I.H., Kim N., Kwon S.M., Lee J.Y. Surgery-first orthognathic approach to correct facial asymmetry: Artificial intelligence-based cephalometric analysis. Plast Reconstr Surg. 2022; 149 (3): 496e-499e. PMID: 35196690
- Fawaz P., Sayegh P.E., Vannet B.V. What is the current state of artificial intelligence applications in dentistry and orthodontics? —J Stomatol Oral Maxillofac Surg. 2023; 124 (5): 101524. PMID: 37270174
- Chung E.J., Yang B.E., Park I.Y., Yi S., On S.W., Kim Y.H., Kang S.H., Byun S.H. Effectiveness of cone-beam computed tomography-generated cephalograms using artificial intelligence cephalometric analysis. Sci Rep. 2022; 12 (1): 20585. PMID: 36446924
- Jeong S., Kim S., Lim S.H., Yu S.K. A study of correlations between cephalometric measurements in Koreans with normal occlusion by network analysis. Sci Rep. 2024; 14 (1): 9660. PMID: 38671196
- Apresyan S.V., Stepanov A.G., Retinskaya M.V., Suonio V.K. Development of complex of digital planning of dental treatment and assessment of its clinical effectiveness. Russian Journal of Dentistry. 2020; 3: 135—140 (In Russian). eLIBRARY ID: 44005658
- Miragall M.F., Knoedler S., Kauke-Navarro M., Saadoun R., Grabenhorst A., Grill F.D., Ritschl L.M., Fichter A.M., Safi A.F., Knoedler L. Face the future — Artificial intelligence in oral and maxillofacial surgery. J Clin Med. 2023; 12 (21): 6843. PMID: 37959310
- Wang J., Wang B., Liu Y.Y., Luo Y.L., Wu Y.Y., Xiang L., Yang X.M., Qu Y.L., Tian T.R., Man Y. Recent advances in digital technology in implant dentistry. J Dent Res. 2024; 103 (8): 787—799. PMID: 38822563
- Fukami T. Patient engagement with psychological safety. Dialogues Health. 2023; 3: 100153. PMID: 38515810
- Rajaram Mohan K., Mathew Fenn S. Artificial intelligence and its theranostic applications in dentistry. Cureus. 2023; 15 (5): e38711. PMID: 37292569
- Bonny T., Al Nassan W., Obaideen K., Al Mallahi M.N., Mohammad Y., El-Damanhoury H.M. Contemporary role and applications of artificial intelligence in dentistry. F1000Res. 2023; 12: 1179. PMID: 37942018
- Adnan N., Umer F. Understanding deep learning — challenges and prospects. J Pak Med Assoc. 2022; 72 (Suppl 1) (2): S59—S63.
- Li S., Liu J., Zhou Z., Zhou Z., Wu X., Li Y., Wang S., Liao W., Ying S., Zhao Z. Artificial intelligence for caries and periapical periodontitis detection. J Dent. 2022; 122: 104107. PMID: 35341892
Downloads
Received
April 23, 2025
Accepted
June 16, 2025
Published on
July 5, 2025




