DOI:

10.37988/1811-153X_2025_2_26

The quality of diagnosis of hidden carious cavities according to CBCT research by dentists in comparison with artificial intelligence

Authors

  • E.A. Lavrenyuk 1, 2, PhD in Medical Sciences, associate professor of the Therapeutic and pediatric dentistry Department; dentist
    ORCID: 0000-0002-9575-4694
  • V.D. Vagner 1, 3, Doctor of Science in Medicine, professor of the Orthodontics and gerontostomatology Department; professor of the Therapeutic and pediatric dentistry Department
    ORCID: 0000-0002-9136-9289
  • M.V. Mironov 1, 2, 5th year student; dental hygienist
    ORCID: 0009-0003-9576-0159
  • 1 Ryazan State Medical University, 390026, Ryazan, Russia
  • 2 Alpha-Dentistry, 390026, Ryazan, Russia
  • 3 Russian University of Medicine, 127473, Moscow, Russia

Abstract

This article compares the diagnostic quality of three groups of dentists with different work experience and different specialties using an artificial intelligence (AI) system. The study proceeded in several stages: 1) studying AI systems used in dentistry; 2) selecting a patient and conducting clinical and X-ray examinations with subsequent processing of the obtained AI data; 3) conducting research among dentists of various specialties and work experience; 4) comparing the results obtained with AI. The “Diagnocat system” (Russia) was selected for the study and an X-ray report of a pre-selected image was performed (which was suitable based on the results of a clinical examination and X-ray analysis by a dentist and AI analysis), dentists were asked to study this CT scan (a program was provided to view the image in three-dimensional image) and clinical photographs of the patient, then The responses of 60 dentists were analyzed. Cases of overdiagnosis by dental doctors have been identified, which tells us about a medical error that can be eliminated when using AI. According to the study, patients who come to a dentist-therapist with 5 to 15 years of work experience receive a better diagnosis.

Key words:

artificial intelligence, dentistry, diagnostics, image analysis

For Citation

[1]
Lavrenyuk E.A., Vagner V.D., Mironov M.V. The quality of diagnosis of hidden carious cavities according to CBCT research by dentists in comparison with artificial intelligence. Clinical Dentistry (Russia).  2025; 28 (2): 26—29. DOI: 10.37988/1811-153X_2025_2_26

References

  1. Dhopte A., Bagde H. Smart smile: Revolutionizing dentistry with artificial intelligence. Cureus. 2023; 15 (6): e41227. PMID: 37529520
  2. Turosz N., Chęcińska K., Chęciński M., Brzozowska A., Nowak Z., Sikora M. Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews. Dentomaxillofac Radiol. 2023; 52 (7): 20230284. PMID: 37665008
  3. Bilgir E., Bayrakdar İ.Ş., Çelik Ö., Orhan K., Akkoca F., Sağlam H., Odabaş A., Aslan A.F., Ozcetin C., Kıllı M., Rozylo-Kalinowska I. An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med Imaging. 2021; 21 (1): 124. PMID: 34388975
  4. Revilla-León M., Gómez-Polo M., Barmak A.B., Inam W., Kan J.Y.K., Kois J.C., Akal O. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. J Prosthet Dent. 2023; 130 (6): 816—824. PMID: 35300850
  5. Tiwari A., Gupta N., Singla D., Ranjan Swain J., Gupta R., Mehta D., Kumar S. Artificial intelligence›s use in the diagnosis of mouth ulcers: A systematic review. Cureus. 2023; 15 (9): e45187. PMID: 37842407
  6. Aminoshariae A., Nosrat A., Nagendrababu V., Dianat O., Mohammad-Rahimi H., O’Keefe A.W., Setzer F.C. Artificial intelligence in endodontic education. J Endod. 2024; 50 (5): 562—578. PMID: 38387793
  7. Ilhan B., Lin K., Guneri P., Wilder-Smith P. Improving oral cancer outcomes with imaging and artificial intelligence. J Dent Res. 2020; 99 (3): 241—248. PMID: 32077795
  8. Sultan A.S., Elgharib M.A., Tavares T., Jessri M., Basile J.R. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J Oral Pathol Med. 2020; 49 (9): 849—856. PMID: 32449232
  9. Liu J., Chen Y., Li S., Zhao Z., Wu Z. Machine learning in orthodontics: Challenges and perspectives. Adv Clin Exp Med. 2021; 30 (10): 1065—1074. PMID: 34610222
  10. Hung K.F., Yeung A.W.K., Bornstein M.M., Schwendicke F. Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol. 2023; 52 (1): 20220335. PMID: 36472627
  11. Boztuna M., Firincioglulari M., Akkaya N., Orhan K. Segmentation of periapical lesions with automatic deep learning on panoramic radiographs: an artificial intelligence study. BMC Oral Health. 2024; 24 (1): 1332. PMID: 39487404
  12. Bayrakdar I.S., Orhan K., Çelik Ö., Bilgir E., Sağlam H., Kaplan F.A., Görür S.A., Odabaş A., Aslan A.F., Różyło-Kalinowska I. A U-net approach to apical lesion segmentation on panoramic radiographs. Biomed Res Int. 2022; 2022: 7035367. PMID: 35075428
  13. Çelik B., Savaştaer E.F., Kaya H.I., Çelik M.E. The role of deep learning for periapical lesion detection on panoramic radiographs. Dentomaxillofac Radiol. 2023; 52 (8): 20230118. PMID: 37641964
  14. Endres M.G., et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel). 2020; 10 (6): 430. PMID: 32599942
  15. Patil S., Albogami S., Hosmani J., Mujoo S., Kamil M.A., Mansour M.A., Abdul H.N., Bhandi S., Ahmed S.S.S.J. Artificial intelligence in the diagnosis of oral diseases: Applications and pitfalls. Diagnostics (Basel). 2022; 12 (5): 1029. PMID: 35626185
  16. Shan T., Tay F.R., Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021; 100 (3): 232—244. PMID: 33118431
  17. Szabó V., Szabó B.T., Orhan K., Veres D.S., Manulis D., Ezhov M., Sanders A. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs. J Dent. 2024; 147: 105105. PMID: 38821394
  18. Ezhov M., Gusarev M., Golitsyna M., Yates J.M., Kushnerev E., Tamimi D., Aksoy S., Shumilov E., Sanders A., Orhan K. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep. 2021; 11 (1): 15006. PMID: 34294759
  19. Choi J.W., Park H., Kim B S I.H., Kim N., Kwon S.M., Lee J.Y. Surgery-first orthognathic approach to correct facial asymmetry: Artificial intelligence-based cephalometric analysis. Plast Reconstr Surg. 2022; 149 (3): 496e-499e. PMID: 35196690
  20. Fawaz P., Sayegh P.E., Vannet B.V. What is the current state of artificial intelligence applications in dentistry and orthodontics? —J Stomatol Oral Maxillofac Surg. 2023; 124 (5): 101524. PMID: 37270174
  21. Chung E.J., Yang B.E., Park I.Y., Yi S., On S.W., Kim Y.H., Kang S.H., Byun S.H. Effectiveness of cone-beam computed tomography-generated cephalograms using artificial intelligence cephalometric analysis. Sci Rep. 2022; 12 (1): 20585. PMID: 36446924
  22. Jeong S., Kim S., Lim S.H., Yu S.K. A study of correlations between cephalometric measurements in Koreans with normal occlusion by network analysis. Sci Rep. 2024; 14 (1): 9660. PMID: 38671196
  23. Apresyan S.V., Stepanov A.G., Retinskaya M.V., Suonio V.K. Development of complex of digital planning of dental treatment and assessment of its clinical effectiveness. Russian Journal of Dentistry. 2020; 3: 135—140 (In Russian). eLIBRARY ID: 44005658
  24. Miragall M.F., Knoedler S., Kauke-Navarro M., Saadoun R., Grabenhorst A., Grill F.D., Ritschl L.M., Fichter A.M., Safi A.F., Knoedler L. Face the future — Artificial intelligence in oral and maxillofacial surgery. J Clin Med. 2023; 12 (21): 6843. PMID: 37959310
  25. Wang J., Wang B., Liu Y.Y., Luo Y.L., Wu Y.Y., Xiang L., Yang X.M., Qu Y.L., Tian T.R., Man Y. Recent advances in digital technology in implant dentistry. J Dent Res. 2024; 103 (8): 787—799. PMID: 38822563
  26. Fukami T. Patient engagement with psychological safety. Dialogues Health. 2023; 3: 100153. PMID: 38515810
  27. Rajaram Mohan K., Mathew Fenn S. Artificial intelligence and its theranostic applications in dentistry. Cureus. 2023; 15 (5): e38711. PMID: 37292569
  28. Bonny T., Al Nassan W., Obaideen K., Al Mallahi M.N., Mohammad Y., El-Damanhoury H.M. Contemporary role and applications of artificial intelligence in dentistry. F1000Res. 2023; 12: 1179. PMID: 37942018
  29. Adnan N., Umer F. Understanding deep learning — challenges and prospects. J Pak Med Assoc. 2022; 72 (Suppl 1) (2): S59—S63.
  30. Li S., Liu J., Zhou Z., Zhou Z., Wu X., Li Y., Wang S., Liao W., Ying S., Zhao Z. Artificial intelligence for caries and periapical periodontitis detection. J Dent. 2022; 122: 104107. PMID: 35341892

Received

April 23, 2025

Accepted

June 16, 2025

Published on

July 5, 2025