DOI:

10.37988/1811-153X_2024_1_136

Fiber-optic systems for the diagnosis of dental pathology: a review. Part I

Authors

  • T.V. Gayvoronskaya 1, PhD in Medical Sciences, full professor of the Oral and maxillofacial surgery Department
    ORCID ID: 0000-0002-8509-2156
  • A.V. Arutyunov 1, PhD in Medical Sciences, full professor of the General Dentistry Department
    ORCID ID: 0000-0001-8823-1409
  • F.S. Ayupova 1, PhD in Medical Sciences, associate professor of the Pediatric dentistry, orthodontics and maxillofacial surgery Department
    ORCID ID: 0000-0002-4194-664X
  • V.V. Volobuev 1, PhD in Medical Sciences, associate professor of the Pediatric dentistry, orthodontics and maxillofacial surgery Department
    ORCID ID: 0000-0001-9752-6911
  • T.I. Murashkina 2, PhD in Engineering, full professor of the Instrumentation Department
    ORCID ID: 0000-0003-3977-994X
  • Yu.A. Vasilev 1, assistant at the General health, public health and the history of medicine Department
    ORCID ID: 0000-0001-7288-996X
  • E.A. Badeeva 2, PhD in Engineering, associate professor of the Radio engineering and radioelectronic systems Department
    ORCID ID: 0000-0001-8364-8918
  • E.Yu. Plotnikova 3, neonatologist at the neonatal ward no. 1
    ORCID ID: 0000-0002-6452-4407
  • A.A. Zub 1, assistant at the Oral and maxillofacial surgery Department
    ORCID ID: 0000-0002-3543-3733
  • A.V. Olenskaya 1, senior lecturer at the General health, public health and the history of medicine Department
    ORCID ID: 0000-0002-1949-0199
  • D.V. Volobuev 4, student
    ORCID ID: 0009-0001-6374-1581
  • 1 Kuban State Medical University, 350063, Krasnodar, Russia
  • 2 Penza State University, 440026, Penza, Russia
  • 3 Maternity Hospital of Krasnodar, 350063, Krasnodar, Russia
  • 4 Kuban State University, 350040, Krasnodar, Russia

Abstract

Fiber-optic sensors and systems are electrically passive, they are used to measure deformation, temperature, displacement, pressure, electric currents, magnetic fields and various other properties of materials and the environment. These systems have a number of advantages over their electrical counterparts — high throughput, small size, lightweight, corrosion resistance, geometric flexibility. They can be sterilized by thermal steam, radiation or dry gas, which is important for the safety of medical use. The aim of the study — systematization of data on the use of fiber-optic equipment for diagnostic medical, including dental ones, purposes. A total of 22 publications were selected. An analysis of the literature has shown the prospects of using fiber optics in dentistry to improve the visibility of the working field. The use of fiber optics in dentistry improves the visibility of the working field. Fiber-optic chemical sensors can detect the activity of microflora, and monitoring of changes caused by demineralization and remineralization increases the effectiveness of prevention of dental caries. The use of fiber-optic transillumination for the timely diagnosis and treatment of caries and its complications in the conditions of primary daily health care helps to reduce the prevalence of the most common dental diseases.

Key words:

fiber-optic systems, dentistry, diagnostics

For Citation

[1]
Gayvoronskaya T.V., Arutyunov A.V., Ayupova F.S., Volobuev V.V., Murashkina T.I., Vasilev Yu.A., Badeeva E.A., Plotnikova E.Yu., Zub A.A., Olenskaya A.V., Volobuev D.V. Fiber-optic systems for the diagnosis of dental pathology: a review. Part I. Clinical Dentistry (Russia).  2024; 27 (1): 136—143. DOI: 10.37988/1811-153X_2024_1_136

References

  1. Correia R., James S., Lee S.W., Morgan S.P., Korposh S. Biomedical application of optical fibre sensors. J. Opt. 2018; 20: 073003. DOI: 10.1088/2040—8986/aac68d
  2. Mowbray S.E., Amiri A.M. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics (Basel). 2019; 9 (1): 23. PMID: 30818830
  3. Wang K.H., Hsieh J.C., Chen C.C., Zan H.W., Meng H.F., Kuo S.Y., Nguyễn M.T.N. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens Bioelectron. 2019; 132: 352—359. PMID: 30897542
  4. Usha S.P., Shrivastav A.M., Gupta B.D. A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens Bioelectron. 2017; 87: 178—186. PMID: 27551998
  5. Abogazalah N., Eckert G.J., Ando M. In vitro visual and visible light transillumination methods for detection of natural non-cavitated approximal caries. Clin Oral Investig. 2019; 23 (3): 1287—1294. PMID: 29987636
  6. Eom J.B., Park A. Applications of optical imaging system in dentistry. Medical Lasers. 2020; 9 (1): 25—33. DOI: 10.25289/ML.2020.9.1.25
  7. Aydın E.B., Aydın M., Sezgintürk M.K. Biosensors for saliva biomarkers. Adv Clin Chem. 2023; 113: 1—41. PMID: 36858644
  8. Kishen A., Shrestha A., Rafique A. Fiber optic backscatter spectroscopic sensor to monitor enamel demineralization and remineralization in vitro. J Conserv Dent. 2008; 11 (2): 63—70. PMID: 20142887
  9. Kassebaum N.J., Bernabé E., Dahiya M., Bhandari B., Murray C.J., Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015; 94 (5): 650—8. PMID: 25740856
  10. Kazeminia M., Abdi A., Shohaimi S., Jalali R., Vaisi-Raygani A., Salari N., Mohammadi M. Dental caries in primary and permanent teeth in children‘s worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med. 2020; 16 (1): 22. PMID: 33023617
  11. Ayupova F.S., Volovuev V.V., Sobirova Zh.V. The structure of the pathology of the oral cavity in children who sought dental care during of occlusion in primary dentition. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Sciences. 2022; 1: 144—147 (In Russian). eLIBRARY ID: 48183929
  12. Kuzmina E.M., Yanushevich O.O., Kuzmina I.N., Lapatina A.V. Tendency in the prevalence of dental caries among the Russian population over a 20-year period. Dental Forum. 2020; 3 (78): 2—8 (In Russian). eLIBRARY ID: 43825063
  13. Volobuev V.V., Mitropanova M.N., Pavlovskaya O.A., Ayupova F.S., Arutyunov A.V., Fattal‘ R.K. Air abrasion with additional water supply for sealing fissures of permanent teeth in children. Pediatric Dentistry and Profilaxis. 2023; 2 (86): 153—159 (In Russian). eLIBRARY ID: 54091420
  14. Kim J.H., Eo S.H., Shrestha R., Ihm J.J., Seo D.G. Association between longitudinal tooth fractures and visual detection methods in diagnosis. J Dent. 2020; 101: 103466. PMID: 32882335
  15. Benjumea E., Díaz L., Torres C. Tooth decay detection using a fiber optic sensor. Revista Facultad de Odontología Universidad de Antioquia. 2018; 29 (2): 405—419. DOI: 10.17533/udea.rfo.v29n2a9
  16. Strassler H.E., Pitel M.L. Using fiber-optic transillumination as a diagnostic aid in dental practice. Compend Contin Educ Dent. 2014; 35 (2): 80—8. PMID: 24571557
  17. Antipoviene A., Girijotaite M., Bendoraitiene E.A. Assessment of the depth of clinically detected approximal caries lesions using digital imaging fiber-optic transillumination in comparison to periapical radiographs. J Oral Maxillofac Res. 2020; 11 (1): e3. PMID: 32377327
  18. Roriz P., Silva S., Frazão O., Novais S. Optical fiber temperature sensors and their biomedical applications. Sensors (Basel). 2020; 20 (7): 2113. PMID: 32283622
  19. Perezcampos Mayoral C., Gutiérrez Gutiérrez J., Cano Pérez J.L., Vargas Treviño M., Gallegos Velasco I.B., Hernández Cruz P.A., Torres Rosas R., Tepech Carrillo L., Arnaud Ríos J., Apreza E.L., Rojas Laguna R. Fiber optic sensors for vital signs monitoring. A review of its practicality in the health field. Biosensors (Basel). 2021; 11 (2): 58. PMID: 33672317
  20. Iwasaki M., Maeda I., Kokubo Y., Tanaka Y., Ueno T., Takahashi W., Watanabe Y., Hirano H. Capacitive-type pressure-mapping sensor for measuring bite force. Int J Environ Res Public Health. 2022; 19 (3): 1273. PMID: 35162299
  21. Murashkina T.I., Badeeva E.A., Istomina T.V., Gayvoronskaya T.V., Plotnikova E.Yu., Parshikova T.V. Method and fiber-optic scanner to determine morphometric parameters patient‘s palate. Biomedical Engineering. 2023; 57: 18—22. DOI: 10.1007/s10527-023-10260-4
  22. Gaivoronskaya T.V., Badeeva E.A., Vasil’ev Yu.A., Murashkina T.I., Arutyunov A.V., Ayupova F.S. An interdisciplinary approach to the comprehensive diagnosis and rehabilitation of children with congenital facial malformations and dentoalveolar anomalies. Clinical Practice in Pediatrics. 2021; 16 (2): 80—85. DOI: 10.20953/1817-7646-2021-2-80-85

Received

September 18, 2023

Accepted

February 2, 2024

Published on

March 21, 2024