DOI:

10.37988/1811-153X_2024_1_90

Conservative methods for optimizing the active phase of orthodontic treatment of dentoalveolar anomalies and deformities: A review

Authors

  • D.A. Shutova 1, postgraduate at the Prosthodontics Department
    ORCID ID: 0009-0003-9312-8221
  • R.E. Kharchenko 1, postgraduate at the Prosthodontics Department
    ORCID ID: 0009-0000-1259-4481
  • N.S. Gilmanova 1, PhD in Medical Sciences, associate professor of the Prosthodontics Department
    ORCID ID: 0000-0002-9024-7837
  • N.N. Belozerova 2, PhD in Medical Sciences, assistant professor of the Caries research and endodontics Department
    ORCID ID: 0000-0002-1753-0599
  • M.V. Mikhailova 1, PhD in Medical Sciences, associate professor of the Prosthodontics Department
    ORCID ID: 0000-0001-9267-1319
  • 1 Sechenov University, 119991, Moscow, Russia
  • 2 Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia

Abstract

One of the important problems of orthodontic treatment is its duration. Therefore, research is being conducted to accelerate the active period of treatment. One of the leading surgical methods is compact osteotomy and its variants. Despite the effectiveness of such intervention there are a number of contraindications to its use and a high risk of postoperative complications. Given the above, there is a need to study and introduce non-invasive methods of accelerating orthodontic treatment of teeth. The aim is to analyze domestic and foreign scientific works, in which the influence of various conservative methods on time indicators of orthodontic treatment is studied, as well as to select the methods most promising for wide application in the clinical practice of an orthodontist.
Materials and methods.
The electronic databases eLibrary, PubMed, Google Scholar, Research Gate, Web of Science and Cyberleninka were analyzed by the key words “acceleration of orthodontic treatment”, “bone remodeling”, “physical-pharmacological auxiliary therapy”, “acceleration of the active period of orthodontic treatment”, “dento-mandibular anomalies”.
Results.
The article presents physical, pharmacological and physical-pharmacological methods to accelerate orthodontic treatment. The majority of conservative methods of orthodontic treatment acceleration are effective — they allow to reduce the terms of active period of treatment: vibration influence — 4 times; ultrasound — 2 times; electrophoresis, magnetophoresis, low-frequency ultraphonophoresis, inductothermoelectrophoresis with trilon B — 2.2 times. Studies on the methods of application of direct current and prostaglandins were conducted within the framework of moving individual teeth, they do not show a reduction in the total time of orthodontic treatment. Studies on the effect of vitamin D and parathyroid hormone on treatment acceleration have only been conducted on animals, they do not show a reduction in the total period of orthodontic treatment.
Conclusion.
Physical-pharmacological methods combine the positive effects of drugs and physical factors. Due to physiotherapeutic forces, soft tissue microcirculation and reparative reactions are improved, the permeability of the mucosa for medicinal substances is increased. And medicinal substances at the same time allow to influence directly on the remodeling of bone structures. It is necessary to conduct additional studies on a large sample with additional analysis of changes in the density of bone structures and microcirculation of peri-dental tissues after adjuvant therapy at different stages of treatment. Further research is also needed in this area with additional attention to application protocols, adverse effects, and cost-benefit analysis.

Key words:

acceleration of orthodontic treatment, bone remodeling, physical and pharmacological auxiliary therapy, duration of the active period of orthodontic treatment, dentofacial anomalies

For Citation

[1]
Shutova D.A., Kharchenko R.E., Gilmanova N.S., Belozerova N.N., Mikhailova M.V. Conservative methods for optimizing the active phase of orthodontic treatment of dentoalveolar anomalies and deformities: A review. Clinical Dentistry (Russia).  2024; 27 (1): 90—98. DOI: 10.37988/1811-153X_2024_1_90

References

  1. Abid M.F. Can we move teeth faster? The effectiveness of different approaches. Annals of Dentistry and Oral Health. 2018; 1: 1001. DOI: 10.33582/2639-9210/1001
  2. Tsichlaki A., Chin S.Y., Pandis N., Fleming P.S. How long does treatment with fixed orthodontic appliances last? A systematic review. Am J Orthod Dentofacial Orthop. 2016; 149 (3): 308—18. PMID: 26926017
  3. Müller L.K., Jungbauer G., Jungbauer R., Wolf M., Deschner J. Biofilm and orthodontic therapy. Monogr Oral Sci. 2021; 29: 201—213. PMID: 33427218
  4. Mohammed H., Rizk M.Z., Wafaie K., Ulhaq A., Almuzian M. Reminders improve oral hygiene and adherence to appointments in orthodontic patients: a systematic review and meta-analysis. Eur J Orthod. 2019; 41 (2): 204—213. PMID: 29947755
  5. Kerefova Z.V., Tkhazaplizheva M.T., Shkhagapsoeva K.A., Kardanova L.V., Kardanova K.K. Influence of orthodontic treatment on the state of periodontal tissues. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Sciences. 2021; 8: 174—179 (In Russian). eLIBRARY ID: 46716063
  6. Deng Y., Sun Y., Xu T. Evaluation of root resorption after comprehensive orthodontic treatment using cone beam computed tomography (CBCT): a meta-analysis. BMC Oral Health. 2018; 18 (1): 116. PMID: 29945577
  7. Liu Y., Li C.X., Nie J., Mi C.B., Li Y.M. Interactions between orthodontic treatment and gingival tissue. Chin J Dent Res. 2023; 26 (1): 11—18. PMID: 36988062
  8. Losev F.F., Popova N.V., Arsenina O.I., Makhortova P.I., Nadtochiy A.G. Cone beam computed tomography assessment of orthodontic treatment results in patients with sagittal skeletal anomalies. Clinical Dentistry (Russia). 2022; 1: 81—90 (In Russian). eLIBRARY ID: 48156203
  9. Moskovets O.O., Slabkovskaya A.B., Moskovets O.N. Hydration of the extracellular environment of periodontal tissues in the dynamics of orthodontic treatment in patients with distal occlusion. Clinical Dentistry (Russia). 2021; 3: 98—103 (In Russian). eLIBRARY ID: 46657562
  10. Andrade I. Jr, Sousa A.B., da Silva G.G. New therapeutic modalities to modulate orthodontic tooth movement. Dental Press J Orthod. 2014; 19 (6): 123—33. PMID: 25628089
  11. Teixeira C.C., Khoo E., Tran J., Chartres I., Liu Y., Thant L.M., Khabensky I., Gart L.P., Cisneros G., Alikhani M. Cytokine expression and accelerated tooth movement. J Dent Res. 2010; 89 (10): 1135—41. PMID: 20639508
  12. Gkantidis N., Mistakidis I., Kouskoura T., Pandis N. Effectiveness of non-conventional methods for accelerated orthodontic tooth movement: a systematic review and meta-analysis. J Dent. 2014; 42 (10): 1300—19. PMID: 25072362
  13. Li Y., Jacox L.A., Little S.H., Ko C.C. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci. 2018; 34 (4): 207—214. PMID: 29655409
  14. Fleming P.S., Fedorowicz Z., Johal A., El-Angbawi A., Pandis N. Surgical adjunctive procedures for accelerating orthodontic treatment. Cochrane Database Syst Rev. 2015; 2015 (6): CD010572. PMID: 26123284
  15. Miles P. Accelerated orthodontic treatment — what’s the evidence? — Aust Dent J. 2017; 62 Suppl 1: 63—70. PMID: 28297096
  16. Apalimova A., Roselló À., Jané-Salas E., Arranz-Obispo C., Marí-Roig A., López-López J. Corticotomy in orthodontic treatment: systematic review. Heliyon. 2020; 6 (5): e04013. PMID: 32490239
  17. Popova N.V., Arsenina O.I., Makhortova P.I., Popova A.V., Shugaylov I.A. Complex orthodontic-surgical rehabilitation of adults with malocclusions and deformations in dentition. Stomatology. 2020; 2: 66—78 (In Russian). eLIBRARY ID: 42851809
  18. Kosyreva T.F., Biruykov A.S., Voeykova O.V., Davidian O.M. Efficacy of vacuum-gradient therapy in reducing orthodontic treatment time. Stomatology. 2020; 5: 69—73 (In Russian). eLIBRARY ID: 44027961
  19. Naumovich S.A. Features of treatment of anomalies and deformities of dentofacial system in formed bite. Sovremennaya stomatologiya (Belarus). 2014; 2 (59): 6—12 (In Russian). eLIBRARY ID: 22364080
  20. Alikhani M., Alansari S., Hamidaddin M.A., Sangsuwon C., Alyami B., Thirumoorthy S.N., Oliveira S.M., Nervina J.M., Teixeira C.C. Vibration paradox in orthodontics: Anabolic and catabolic effects. PLoS One. 2018; 13 (5): e0196540. PMID: 29734391
  21. Shipley T.S. Effects of high frequency acceleration device on aligner treatment—A pilot study. Dent J (Basel). 2018; 6 (3): 32. PMID: 30002296
  22. Pavlin D., Anthony R., Raj V., Gakunga P.T. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: A double-blind, randomized controlled trial. Seminars in Orthodontics. 2015; 21 (3): 187—194. DOI: 10.1053/J.SODO.2015.06.005
  23. Woodhouse N.R., DiBiase A.T., Johnson N., Slipper C., Grant J., Alsaleh M., Donaldson A.N., Cobourne M.T. Supplemental vibrational force during orthodontic alignment: a randomized trial. J Dent Res. 2015; 94 (5): 682—9. PMID: 25758457
  24. Kim D.H. The effects of electrical current from a micro-electrical device on tooth movement. Korean Journal of Orthodontics. 2008; 38 (5): 337—346. DOI: 10.4041/kjod.2008.38.5.337
  25. Sato M., Nagata K., Kuroda S., Horiuchi S., Nakamura T., Karima M., Inubushi T., Tanaka E. Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells. Ann Biomed Eng. 2014; 42 (10): 2156—63. PMID: 25096496
  26. Arai C., Kawai N., Nomura Y., Tsuge A., Nakamura Y., Tanaka E. Low-intensity pulsed ultrasound enhances the rate of lateral tooth movement and compensatory bone formation in rats. Am J Orthod Dentofacial Orthop. 2020; 157 (1): 59—66. PMID: 31901282
  27. Al-Dboush R., Esfahani A.N., El-Bialy T. Impact of photobiomodulation and low-intensity pulsed ultrasound adjunctive interventions on orthodontic treatment duration during clear aligner therapy. Angle Orthod. 2021; 91 (5): 619—625. PMID: 34407180
  28. Kaur H., El-Bialy T. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS). J Clin Med. 2020; 9 (5): 1303. PMID: 32370099
  29. El-Bialy T., Farouk K., Carlyle T.D., Wiltshire W., Drummond R., Dumore T., Knowlton K., Tompson B. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: A prospective multi-center randomized controlled trial. J Clin Med. 2020; 9 (3): 804. PMID: 32188053
  30. Camacho A.D., Velásquez Cujar S.A. Dental movement acceleration: Literature review by an alternative scientific evidence method. World J Methodol. 2014; 4 (3): 151—62. PMID: 25332914
  31. Qamruddin I., Alam M.K., Mahroof V., Fida M., Khamis M.F., Husein A. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets. Am J Orthod Dentofacial Orthop. 2017; 152 (5): 622—630. PMID: 29103440
  32. Doshi-Mehta G., Bhad-Patil W.A. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012; 141 (3): 289—297. PMID: 22381489
  33. Ge M.K., He W.L., Chen J., Wen C., Yin X., Hu Z.A., Liu Z.P., Zou S.J. Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci. 2015; 30 (5): 1609—18. PMID: 24554452
  34. Bazikyan E.A., Chunikhin A.A., Chobanyan A.G., Akhmazov E.V., Zhuruly G.N., Sahakyan M.Y., Zayratyants O.V. Effect of low-energy nanosecond laser therapy on reparative osteogenesis in vivo. Modern Technologies in Medicine. 2019; 2: 44—49 (In English). eLIBRARY ID: 39194318
  35. Pilbeam C. Prostaglandins and bone. Handb Exp Pharmacol. 2020; 262: 157—175. PMID: 31820176
  36. Cağlaroğlu M., Erdem A. Histopathologic investigation of the effects of prostaglandin E2 administered by different methods on tooth movement and bone metabolism. Korean J Orthod. 2012; 42 (3): 118—28. PMID: 23112942
  37. Seifi M., Hamedi R., Khavandegar Z. The Effect of Thyroid Hormone, Prostaglandin E2, and Calcium Gluconate on Orthodontic Tooth Movement and Root Resorption in Rats. J Dent (Shiraz). 2015; 16 (1 Suppl): 35—42. PMID: 26106633
  38. Kaklamanos E.G., Makrygiannakis M.A., Athanasiou A.E. Does medication administration affect the rate of orthodontic tooth movement and root resorption development in humans? A systematic review. Eur J Orthod. 2020; 42 (4): 407—414. PMID: 31421637
  39. Iosub Ciur M.D., Zetu I.N., Haba D., Viennot S., Bourgeois D., Andrian S. Evaluation of the Influence of Local Administration of Vitamin D on the Rate of Orthodontic Tooth Movement. Rev Med Chir Soc Med Nat Iasi. 2016; 120 (3): 694—99. PMID: 30148332
  40. Li F., Li G., Hu H., Liu R., Chen J., Zou S. Effect of parathyroid hormone on experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2013; 144 (4): 523—32. PMID: 24075660
  41. Khurshid Z., Asiri F.Y. Influence of intermittent parathyroid hormone (PTH) administration on the outcomes of orthodontic tooth tovement — a systematic review. Applied Sciences. 2021; 11: 5268. DOI: 10.3390/app11115268
  42. Ivashenko S.V. Optimization of the active period of orthodontic treatment dentoalveolar anomalies and deformations formed bite through by the application of physical and physical-pharmacological methods. Medical Journal. 2014; 2 (48): 129—132 (In Russian). eLIBRARY ID: 21476951
  43. Gunko T., Sagalovich E., Gunko I. Reaction of the complement system of the blood serum of rabbits on the influence of magnetotherapy and ongoing orthodontic treatment of dentofacial abnomalies. Stomatologičeskij žurnal. 2016; 1: 19—21 (In Russian). eLIBRARY ID: 41709736

Received

September 26, 2023

Accepted

February 21, 2024

Published on

March 21, 2024