DOI:

10.37988/1811-153X_2023_1_106

Finite element analysis of the influence of the angle of application of force and displacement during dental implantation operations

Authors

  • P.O. Grishin 1, PhD in Medical Sciences, associate professor of the Maxillofacial surgery Department
    ORCID ID: 0000-0002-8232-381X
  • G.T. Saleeva 1, PhD in Medical Sciences, full professor of the Prosthodontics Department
    ORCID ID: 0000-0001-9751-0637
  • R.A. Saleev 1, PhD in Medical Sciences, full professor of the Prosthodontics Department, dean of the Dental Faculty
    ORCID ID: 0000-0003-3604-7321
  • E.V. Mamaeva 1, PhD in Medical Sciences, full professor of the Pediatric dentistry Department
    ORCID ID: 0000-0002-4087-2212
  • E.A. Kalinnikova 2, resident of the Surgical dentistry Department
    ORCID ID: 0000-0003-3828-614X
  • 1 Kazan State Medical University, 420012, Kazan, Russia
  • 2 Institute of Medical Education of the Chuvash Republic Ministry of Health, 428018, Cheboksary, Russia

Abstract

The objective was to determine the magnitude of stresses in the bone tissue surrounding the implant when it is placed vertically or in a displaced configuration, with an assessment of the effect of axial and nonaxial loading. >. Three-dimensional finite element analysis (FEA) was performed at various angles of implant inclination to determine and compare stresses in the implant, surrounding bone, implant-bone interface, and abutment-implant interface, and to determine the optimal options for placing the implants in different configurations (straight or angled). As an example, a cylindrical BioSink implant and a conical Vega (Humana Dental) with a diameter of 3.5 mm and a length of 11.5 mm were modeled with the corresponding screw-retained abutments. This FEM model makes it possible to simulate different clinical situations and determine the best option for implant and prosthetic placement from a biomechanical point of view. >. The maximum stress in the bone tissue surrounding the implant was determined with the vertical load of the implant. Changing the angle of force application by 10° resulted in an increase in tension in the bone tissue surrounding the implant. At the same time, the resulting displacement fully compensates for the increase in stress. In the lingual and buccal implant placement models, the main Mises stress values occurred in the mesial and distal regions of the implant with vertical loading. The highest stress was observed at the implant neck for both the straight and angled systems. No stress concentrations were detected at the inner and outer corners of the angled implants, nor in the area of the peri-implant slot along the implant body or at the apex.

Key words:

dentistry, dental implants, mathematical modeling, 3D finite element analysis, stress, tilt angle

For Citation

[1]
Grishin P.O., Saleeva G.T., Saleev R.A., Mamaeva E.V., Kalinnikova E.A. Finite element analysis of the influence of the angle of application of force and displacement during dental implantation operations. Clinical Dentistry (Russia).  2023; 26 (1): 106—113. DOI: 10.37988/1811-153X_2023_1_106

References

  1. Chrcanovic B.R., Kisch J., Albrektsson T., Wennerberg A. Factors influencing the fracture of dental implants. Clin Implant Dent Relat Res. 2018; 20 (1): 58—67. PMID: 29210188
  2. Doganay O., Kilic E. Comparative finite element analysis of short implants with different treatment approaches in the atrophic mandible. Int J Oral Maxillofac Implants. 2020; 35 (4): e69-e76. PMID: 32724926
  3. de Souza Rendohl E., Brandt W.C. Stress distribution with extra-short implants in an angled frictional system: A finite element analysis study. J Prosthet Dent. 2020; 124 (6): 728.e1—728.e9. PMID: 32694020
  4. Farronato D., Manfredini M., Stevanello A., Campana V., Azzi L., Farronato M. A Comparative 3D Finite Element Computational Study of Three Connections. Materials (Basel). 2019; 12 (19): 3135. PMID: 31561421
  5. Abakarov S.I., Sorokin D.V., Lapushko V.Yu., Abakarova S.S. Stress-deformed state of a non-removable prosthesis on implants in the process of cementing, depending on the angle of the abutment walls. Clinical Dentistry (Russia). 2022; 4: 150—158 (In Russ.). eLIBRARY ID: 49940630
  6. Grishin P., Mamaeva E., Kalinnikova E., Kozlov A., Kushner E., Chigarina C. The effect of microstructure of the surface, the design and dimension of dental implants on their stability and the process of osteointegration during immediate and delayed implantation. Part II. Actual Dentistry. 2021; 4 (108): 34—38 (In Russ.). eLIBRARY ID: 47294872
  7. Makary C., Menhall A., Zammarie C., Lombardi T., Lee S.Y., Stacchi C., Park K.B. Primary stability optimization by using fixtures with different thread depth according to bone density: A clinical prospective study on early loaded implants. Materials (Basel). 2019; 12 (15): 2398. PMID: 31357620
  8. Marenzi G., Spagnuolo G., Sammartino J.C., Gasparro R., Rebaudi A., Salerno M. Micro-scale surface patterning of titanium dental implants by anodization in the presence of modifying salts. Materials (Basel). 2019; 12 (11): 10. PMID: 31151141
  9. Fiorillo L., Cicciù M., D'Amico C., Mauceri R., Oteri G., Cervino G. Finite element method and Von Mises investigation on bone response to dynamic stress with a novel conical dental implant connection. Biomed Res Int. 2020; 2020: 2976067. PMID: 33102577
  10. Bahuguna R., Anand B., Kumar D., Aeran H., Anand V., Gulati M. Evaluation of stress patterns in bone around dental implant for different abutment angulations under axial and oblique loading: A finite element analysis. Natl J Maxillofac Surg. 2013; 4 (1): 46—51. PMID: 24163552
  11. Rizzo R., Quaranta A., De Paoli M., Rappelli G., Piemontese M. Three-dimensional bone augmentation and immediate implant placement via transcrestal sinus lift: 8-year clinical outcomes. Int J Periodontics Restorative Dent. 2018; 38 (3): 423—429. PMID: 29641633
  12. Paracchini L., Barbieri C., Redaelli M., Di Croce D., Vincenzi C., Guarnieri R. Finite element analysis of a new dental design optimized for the desirable stress distribution in surrounding done region. Prosthesis. 2020; 2 (3): 225—236. DOI: 10.3390/prosthesis2030019.
  13. Hussein F.A., Salloomi K.N., Abdulrahman B.Y., Al-Zahawi A.R., Sabri L.A. Effect of thread depth and implant shape on stress distribution in anterior and posterior regions of mandible bone: A finite element analysis. Dent Res J (Isfahan). 2019; 16 (3): 200—207. PMID: 31040877
  14. Kilic E., Doganay O. Evaluation of stress in tilted implant concept with variable diameters in the atrophic mandible: Three-dimensional finite element analysis. J Oral Implantol. 2020; 46 (1): 19—26. PMID: 31647683
  15. Seo J.G., Cho J.H. Clinical outcomes of rigid and non-rigid telescopic double-crown-retained removable dental prostheses: An analytical review. J Adv Prosthodont. 2020; 12 (1): 38—48. PMID: 32128085
  16. Shi M., Li H., Liu X. Multidisciplinary design optimization of dental implant based on finite element method and surrogate models. Journal of Mechanical Science and Technology. 2017; 31: 5067—5073. DOI: 10.1007/S12206-017-0955-X

Received

November 21, 2022

Accepted

February 21, 2023

Published on

March 22, 2023