DOI:

10.37988/1811-153X_2021_1_131

Results of the study of digital images of the bases of complete removable prostheses made using 3D printing and traditional technologies

Authors

  • Yu.A. Vokulova 1, PhD in Medical Sciences, prosthodontist, head of the Dentistry division
    ORCID ID: 0000-0001-5220-2032
  • E.N. Zhulev 2, PhD in Medical Sciences, full professor of the Prosthodontics and orthodontics Department
    ORCID ID: 0000-0001-9539-3350
  • 1 Russian Federal customs service Dental clinic no. 2, 603098, Nizhny Novgorod, Russia
  • 2 Privolzhsky Research Medical University, 603005, Nizhniy Novgorod, Russia

Abstract

The aim is to study the dimensional accuracy of the bases of complete removable prostheses made using digital and traditional technologies.
Materials and methods.
Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). Digital images of the bases of complete removable prostheses were studied using the MeshLab computer program. The nonparametric Mann—Whitney U-test was used for statistical analysis of the obtained data.
Results.
Based on the data obtained, it was found that the bases of complete removable prostheses made using modern digital technologies have greater dimensional accuracy (average median distance 0.0771±0.0158 mm) compared to the bases of complete removable prostheses made using the traditional method (average median distance 0.1357±0.0277 mm) with a significance level of p<0.05 (U=0, p=0.002).
Conclusion.
Scanning the toothless upper jaw in an experiment with an intraoral laser scanner makes it possible to produce complete removable prostheses with high dimensional accuracy using the 3D printer from the bioinert photopolymer material NextDent Base.

Key words:

digital technologies in dentistry, digital impressions, ExoCAD, intraoral scanner, 3D printing, complete removable prostheses

For Citation

[1]
Vokulova Yu.A., Zhulev E.N. Results of the study of digital images of the bases of complete removable prostheses made using 3D printing and traditional technologies. Clinical Dentistry (Russia).  2021; 1 (97): 131—135. DOI: 10.37988/1811-153X_2021_1_131

References

  1. Zhulev E.N., Vokulova Y.A. The technique of applying digital prints to explore the quality of the retraction of the gingival margin. — Kuban Scientific Medical Bulletin. — 2017; 1 (162): 46—8 (In Russ.).
  2. Ryahovskij A.N. Digital dentistry. — Moscow: Avantis, 2010. — P. 106—112 (In Russ.).
  3. Birnbaum N.S., Stephens C., Aaronson H.B., Cohen B. 3D Digital Scanners: a high-tech approach to more accurate dental impressions. — Inside Dentistry. — 2009; 5 (4). https://www.dentalaegis.com
  4. Flügge T.V., Schlager S., Nelson K., Nahles S., Metzger M.C. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. — Am J Orthod Dentofacial Orthop. — 2013; 144 (3): 471—8. PMID: 23992820
  5. Gallardo Y.R., Bohner L., Tortamano P., Pigozzo M.N., Laganá D.C., Sesma N. Patient outcomes and procedure working time for digital versus conventional impressions: A systematic review. — J Prosthet Dent. — 2018; 119 (2): 214—9. PMID: 28967407
  6. Kim S.-Y., Kim M.-J., Han J.-S., Yeo I.-S., Lim Y.-J., Kwon H.-B. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging. — Int J Prosthodont. — 2013; 26 (2): 161—3. PMID: 23476911
  7. Logozzo S., Franceschini G., Kilpelae A., Caponi M., Governi L., Blois L. A comparative analysis of intraoral 3d digital scanners for restorative dentistry. — The Internet Journal of Medical Technology. — 2008; 5 (1): 1—18. http://ispub.com
  8. Patzelt S.B.M., Lamprinos C., Stampf S., Att W. The time efficiency of intraoral scanners: an in vitro comparative study. — J Am Dent Assoc. — 2014; 145 (6): 542—51. PMID: 24878708
  9. Patzelt S.B.M., Emmanouilidi A., Stampf S., Strub J.R., Att W. Accuracy of full-arch scans using intraoral scanners. — Clin Oral Investig. — 2014; 18 (6): 1687—94. PMID: 24240949
  10. Seelbach P., Brueckel C., Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. — Clin Oral Investig. — 2013; 17 (7): 1759—64. PMID: 23086333
  11. Yuzbasioglu E., Kurt H., Turunc R., Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. — BMC Oral Health. — 2014; 14: 10. PMID: 24479892
  12. Belyaj A.M., Ermolaev G.A. Application of 3D technologies at the stages of manufacturing orthopedic structures. — In proceedings of the “Comprehensive rehabilitation of patients in the clinic of orthopedic dentistry” conference. — Minsk: Integralpoligraf, 2017. — Pp. 78—80 (In Russ.).
  13. Vizer Y.Y., Elali A.H. 3D printing technologies in medicine and dentistry. — In proceedings of the “Natural science foundations of medical and biological knowledge” conference. — Ryazan, 2017. — Pp. 114—116 (In Russ.).
  14. Ermolaeva K.A., Korshakevich I.S., Tihonenko D.V. Application of 3D technologies in dentistry. — In collection of scientific papers dedicated to the 125th anniversary of the founder of the Department of orthopedic dentistry of KSMU, Professor Isaac Mikhailovich Oxman. — Kazan: KSMU, 2017. — Pp. 163—169 (In Russ.).
  15. Karyakin N.N., Gorbatov R.O. 3D printing in medicine. — Moscow: GEOTAR-Media, 2019. — P. 194—221 (In Russ.).
  16. Shustova V.A., SHustov M.A. Application of 3D technologies in prosthetics dentistry. — Saint Petersburg: SpecLit, — 2016. — P. 8—44 (In Russ.).
  17. Dawood A., Marti B.M., Sauret-Jackson V., Darwood A. 3D printing in dentistry. — Br Dent J. — 2015; 219 (11): 521—9. PMID: 26657435
  18. Oberoi G., Nitsch S., Edelmayer M., Janjić K., Müller A.S., Agis H. 3D Printing — Encompassing the facets of dentistry. — Front Bioeng Biotechnol. — 2018; 6: 172. PMID: 30525032
  19. Garcia J., Yang Z.L., Mongrain R., Leask R.L., Lachapelle K. 3D printing materials and their use in medical education: a review of current technology and trends for the future. — BMJ Simul Technol Enhanc Learn. — 2018; 4 (1): 27—40. PMID: 29354281
  20. Chung Y.-J., Park J.-M., Kim T.-H., Ahn J.-S., Cha H.-S., Lee J.-H. 3D printing of resin material for denture artificial teeth: Chipping and indirect tensile fracture resistance. — Materials (Basel). — 2018; 11 (10): 1798. PMID: 30248955
  21. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. — Biomed Eng Online. — 2016; 15 (1): 115. PMID: 27769304
  22. Lebedenko I.Y., Arutyunov S.D., Ryahovskij A.N. Prosthetic dentistry: national guide. — Moscow: GEOTAR-Media, 2016. — P. 158. (In Russ.).
  23. de Mendonça A.F., de Mendonça M.F., White G.S., Sara G., Littlefair D. Total CAD/CAM Supported Method for Manufacturing Removable Complete Dentures. — Case Rep Dent. — 2016; 2016: 1259581. PMID: 27974977
  24. Unkovskiy A., Wahl E., Zander A.T., Huettig F., Spintzyk S. Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. — BMC Oral Health. — 2019; 19 (1): 46. PMID: 30866892
  25. Kim T., Varjão F., Duarte S. Esthetic rehabilitation of an edentulous arch using a fully digital approach. — In: Duarte S. (ed.) Quintessence of dental technology 2018. — Quintessence (USA), 2018. — Pp. 227—236.
  26. Kanazawa M., Inokoshi M., Minakuchi S., Ohbayashi N. Trial of a CAD/CAM system for fabricating complete dentures. — Dent Mater J. — 2011; 30 (1): 93—6. PMID: 21282882
  27. Janeva N., Kovacevska G., Janev E. Complete dentures fabricated with CAD/CAM technology and a traditional clinical recording method. — Open Access Maced J Med Sci. — 2017; 5 (6): 785—789. PMID: 29104691
  28. Han W., Li Y., Zhang Y., Lv Y., Zhang Y., Hu P., Liu H., Ma Z., Shen Y. Design and fabrication of complete dentures using CAD/CAM technology. — Medicine (Baltimore). — 2017; 96 (1): e5435. PMID: 28072686
  29. Soltanzadeh P., Suprono M.S., Kattadiyil M.T., Goodacre C., Gregorius W. An in vitro investigation of accuracy and fit of conventional and CAD/CAM removable partial denture frameworks. — J Prosthodont. — 2019; 28 (5): 547—55. PMID: 30407685
  30. Kalberer N., Mehl A., Schimmel M., Müller F., Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: An in vitro evaluation of trueness. — J Prosthet Dent. — 2019; 121 (4): 637—43. PMID: 30711292
  31. Chen H., Wang H., Lv P., Wang Y., Sun Y. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. — Biomed Res Int. — 2015; 2015: 453968. PMID: 26583108
  32. Goodacre B.J., Goodacre C.J., Baba N.Z., Kattadiyil M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. — J Prosthet Dent. — 2016; 116 (2): 249—56. PMID: 27112416

Received

November 12, 2020

Published on

March 1, 2021