DOI:

10.37988/1811-153X_2025_1_171

The role of virulence factors of Porphyromonas gingivalis and Tannerella forsythia in pathogenesis of periodontal diseases: A review

Authors

  • O.V. Evdokimova 1, PhD in Medical Sciences, associate professor and head of the Microbiology Department
    ORCID: 0000-0002-5035-7302
  • E.P. Kotelevets 1, PhD in Medical Sciences, associate professor of the Microbiology Department
    ORCID: 0000-0001-7972-5861
  • A.I. Novak 1, Doctor of Science in Biology, professor of the Microbiology Department
    ORCID: 0000-0003-0345-7316
  • V.V. Biryukov 1, PhD in Medical Sciences, associate professor of the Microbiology Department
    ORCID: 0000-0003-2704-5893
  • 1 Ryazan State Medical University, 390026, Ryazan, Russia

Abstract

Currently, cultural and molecular genetic research methods make it possible to obtain important data on the phenotype of virulent strains to assess their etiological significance in the development of the pathological process. Virulence factors of microorganisms provide specific interaction of the pathogen with periodontal cells, help evade or protect themselves from the immune reactions of the macroorganism and have a direct damaging effect on the structural integrity and functions of host cells. The study of these biological properties of Porphyromonas gingivalis and Tannerella forsythia makes it possible to predict the likelihood of developing diseases and assess the risks of complications during the manifestation of the inflammatory process in periodontal tissue. At the same time, the high variability of virulence properties, the dependence of their synthesis in vivo on other phenotypic properties of the pathogen and the presence of other microorganisms make determining the etiological significance of various virulence factors of periodontopathogens not a simple medical task. The virulent properties of Porphyromonas gingivalis and Tannerella forsythia are characterized not only by species specificity, but also by a wide range of secreted metabolic products, the damaging effect of which is directed selectively to periodontal tissue. This review makes an attempt to group the virulent properties of Porphyromonas and Forsythia according to their ability to participate in the pathogenesis of the pathological process in periodontal tissue from colonization to disruption of homeostasis, characterizing the multifunctionality of virulence factors. Identification of the most important and key virulent properties of periodontal pathogens can be used to create new approaches in the development of algorithms for etiotropic and pathogenetic therapy of periodontal diseases.

Key words:

virulence, periodontopathogenic bacteria, capsule, fimbrillins, porin proteins, secreted proteins, glycoproteins, trypsin-like proteinases, gingipains, lipopolysaccharide, glycosides

For Citation

[1]
Evdokimova O.V., Kotelevets E.P., Novak A.I., Biryukov V.V. The role of virulence factors of Porphyromonas gingivalis and Tannerella forsythia in pathogenesis of periodontal diseases: A review. Clinical Dentistry (Russia).  2025; 28 (1): 171—178. DOI: 10.37988/1811-153X_2025_1_171

References

  1. Ismagilov O., Shulaev A., Statseva E., Ahmetova G., Berezin K. Dental morbidity of school children. Actual Problems in Dentistry. 2019; 4: 140—148 (In Russian). eLIBRARY ID: 42364569
  2. Tarasova Yu.G., Dmitrakova N.R. Epidemiology of periodontal diseases in different settlements in the Udmurt Republic of Russian Federation. In: proceedings of the “Topical issues in dentistry” conference. Kazan: Kazan State Medical University, 2021. Pp. 136—141 (In Russian). eLIBRARY ID: 45687205
  3. Eke P.I., Wei L., Thornton-Evans G.O., Borrell L.N., Borgnakke W.S., Dye B., Genco R.J. Risk indicators for periodontitis in US adults: NHANES 2009 to 2012. J Periodontol. 2016; 87 (10): 1174—85. PMID: 27367420
  4. Dahlen G., Basic A., Bylund J. Importance of virulence factors for the persistence of oral bacteria in the inflamed gingival crevice and in the pathogenesis of periodontal disease. J Clin Med. 2019; 8 (9): 1339. PMID: 31470579
  5. Nowicki E.M., Shroff R., Singleton J.A., Renaud D.E., Wallace D., Drury J., Zirnheld J., Colleti B., Ellington A.D., Lamont R.J., Scott D.A., Whiteley M. Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio. 2018; 9 (2): e00575—18. PMID: 29666288
  6. Hiranmayi K.V., Sirisha K., Ramoji Rao M.V., Sudhakar P. Novel pathogens in periodontal microbiology. J Pharm Bioallied Sci. 2017; 9 (3): 155—163. PMID: 28979069
  7. Gimranova I.A., Khakimova L.R., Akmalova G.M., Gazizullina G.R. Modern methods of diagnosis of periodontal diseases: opportunities and prospects (review of literature). Russian Clinical Laboratory Diagnostics. 2023; 9: 570—577 (In Russian). eLIBRARY ID: 54394051
  8. Jia L., Han N., Du J., Guo L., Luo Z., Liu Y. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front Cell Infect Microbiol. 2019; 9: 262. PMID: 31380305
  9. Tsarev V.N., Nikolaeva E.N., Ippolitov E.V. Periodontophatogenic bacteria of the main factors of emergence and development of periodontitis. Journal of Microbiology, Epidemiology and Immunobiology. 2017; 5: 101—112 (In Russian). eLIBRARY ID: 32628890
  10. Pérez-Chaparro P.J., Gonçalves C., Figueiredo L.C., Faveri M., Lobão E., Tamashiro N., Duarte P., Feres M. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014; 93 (9): 846—58. PMID: 25074492
  11. Bao K., Belibasakis G.N., Thurnheer T., Aduse-Opoku J., Curtis M.A., Bostanci N. Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol. 2014; 14: 258. PMID: 25270662
  12. Mohanty R., Asopa S.J., Joseph M.D., Singh B., Rajguru J.P., Saidath K., Sharma U. Red complex: Polymicrobial conglomerate in oral flora: A review. J Family Med Prim Care. 2019; 8 (11): 3480—3486. PMID: 31803640
  13. Zakirov T.V., Voroshilina E.S., Brusnitsyna E.V., Ioshchenko E.S., Kantorovich A.Y., Savchenko G.D. Diagnostics of the main periodontopathogenic bacteria in gingivitis in children in the period of early mixed dentition. Ural Medical Journal. 2019; 1 (169): 19—23 (In Russian). eLIBRARY ID: 39538811
  14. Rajakaruna G.A., Negi M., Uchida K., Sekine M., Furukawa A., Ito T., Kobayashi D., Suzuki Y., Akashi T., Umeda M., Meinzer W., Izumi Y., Eishi Y. Localization and density of Porphyromonas gingivalis and Tannerella forsythia in gingival and subgingival granulation tissues affected by chronic or aggressive periodontitis. Sci Rep. 2018; 8 (1): 9507. PMID: 29934515
  15. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015; 15 (1): 30—44. PMID: 25534621
  16. Naginyte M., Do T., Meade J., Devine D.A., Marsh P.D. Enrichment of periodontal pathogens from the biofilms of healthy adults. Sci Rep. 2019; 9 (1): 5491. PMID: 30940882
  17. Thanetchaloempong W., Koontongkaew S., Utispan K. Fixed orthodontic treatment increases cariogenicity and virulence gene expression in dental biofilm. J Clin Med. 2022; 11 (19): 5860. PMID: 36233727
  18. Shahoumi L.A., Saleh M.H.A., Meghil M.M. Virulence factors of the periodontal pathogens: Tools to evade the host immune response and promote carcinogenesis. Microorganisms. 2023; 11 (1): 115. PMID: 36677408
  19. Li C., Yu R., Ding Y. Association between Porphyromonas gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol. 2022; 12: 1026457. PMID: 36467726
  20. Irshad M., van der Reijden W.A., Crielaard W., Laine M.L. In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts; role of the capsule. Arch Immunol Ther Exp (Warsz). 2012; 60 (6): 469—76. PMID: 22949096
  21. Polak D., Ferdman O., Houri-Haddad Y. Porphyromonas gingivalis capsule-mediated coaggregation as a virulence factor in mixed infection with Fusobacterium nucleatum. J Periodontol. 2017; 88 (5): 502—510. PMID: 27885964
  22. Davey M.E., Duncan M.J. Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J Bacteriol. 2006; 188 (15): 5510—23. PMID: 16855241
  23. Roky M., Trent J.O., Demuth D.R. Identification of functional domains of the minor fimbrial antigen involved in the interaction of Porphyromonas gingivalis with oral streptococci. Mol Oral Microbiol. 2020; 35 (2): 66—77. PMID: 31994329
  24. Hasegawa Y., Nagano K. Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. Jpn Dent Sci Rev. 2021; 57: 190—200. PMID: 34691295
  25. Naylor K.L., Widziolek M., Hunt S., Conolly M., Hicks M., Stafford P., Potempa J., Murdoch C., Douglas C.W., Stafford G.P. Role of OmpA2 surface regions of Porphyromonas gingivalis in host-pathogen interactions with oral epithelial cells. Microbiologyopen. 2017; 6 (1): e00401. PMID: 27595778
  26. Inomata M., Horie T., Into T. OmpA-like proteins of Porphyromonas gingivalis contribute to serum resistance and prevent Toll-like receptor 4-mediated host cell activation. PLoS One. 2018; 13 (8): e0202791. PMID: 30153274
  27. Sharma A. Virulence mechanisms of Tannerella forsythia. Periodontol 2000. 2010; 54 (1): 106—16. PMID: 20712636
  28. Capestany C.A., Kuboniwa M., Jung I.Y., Park Y., Tribble G.D., Lamont R.J. Role of the Porphyromonas gingivalis InlJ protein in homotypic and heterotypic biofilm development. Infect Immun. 2006; 74 (5): 3002—5. PMID: 16622239
  29. Sakakibara J., Nagano K., Murakami Y., Higuchi N., Nakamura H., Shimozato K., Yoshimura F. Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology (Reading). 2007; 153 (Pt 3): 866—876. PMID: 17322207
  30. Sharma A., Inagaki S., Sigurdson W., Kuramitsu H.K. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol. 2005; 20 (1): 39—42. PMID: 15612944
  31. Bostanci N., Belibasakis G.N. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012; 333 (1): 1—9. PMID: 22530835
  32. Castro S.A., Collighan R., Lambert P.A., Dias I.H., Chauhan P., Bland C.E., Milic I., Milward M.R., Cooper P.R., Devitt A. Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils. Cell Death Dis. 2017; 8 (3): e2644. PMID: 28252646
  33. Zhang J., Xie M., Huang X., Chen G., Yin Y., Lu X., Feng G., Yu R., Chen L. The effects of Porphyromonas gingivalis on atherosclerosis-related cells. Front Immunol. 2021; 12: 766560. PMID: 35003080
  34. Jain S., Darveau R.P. Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontol 2000. 2010; 54 (1): 53—70. PMID: 20712633
  35. Andrukhov O., Ertlschweiger S., Moritz A., Bantleon H.P., Rausch-Fan X. Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts. Acta Odontol Scand. 2014; 72 (5): 337—45. PMID: 24255960
  36. Sochalska M., Potempa J. Manipulation of neutrophils by Porphyromonas gingivalis in the development of periodontitis. Front Cell Infect Microbiol. 2017; 7: 197. PMID: 28589098
  37. Schäffer C., Andrukhov O. The intriguing strategies of Tannerella forsythia’s host interaction. Front Oral Health. 2024; 5: 1434217. PMID: 38872984
  38. Guzik K., Bzowska M., Smagur J., Krupa O., Sieprawska M., Travis J., Potempa J. A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ. 2007; 14 (1): 171—82. PMID: 16628232
  39. de Diego I., Veillard F., Sztukowska M.N., Guevara T., Potempa B., Pomowski A., Huntington J.A., Potempa J., Gomis-Rüth F.X. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem. 2014; 289 (46): 32291—32302. PMID: 25266723
  40. Potempa J., Pike R., Travis J. The multiple forms of trypsin-like activity present in various strains of Porphyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain. Infect Immun. 1995; 63 (4): 1176—82. PMID: 7890369
  41. Potempa J., Pike R., Travis J. Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem. 1997; 378 (3—4): 223—30. PMID: 9165075
  42. Tomi N., Fukuyo Y., Arakawa S., Nakajima T. Pro-inflammatory cytokine production from normal human fibroblasts is induced by Tannerella forsythia detaching factor. J Periodontal Res. 2008; 43 (2): 136—42. PMID: 18302614
  43. Oido-Mori M., Rezzonico R., Wang P.L., Kowashi Y., Dayer J.M., Baehni P.C., Chizzolini C. Porphyromonas gingivalis gingipain-R enhances interleukin-8 but decreases gamma interferon-inducible protein 10 production by human gingival fibroblasts in response to T-cell contact. Infect Immun. 2001; 69 (7): 4493—501. PMID: 11401991
  44. Hamlet S.M., Ganashan N., Cullinan M.P., Westerman B., Palmer J.E., Seymour G.J. A 5-year longitudinal study of Tannerella forsythia prtH genotype: association with loss of attachment. J Periodontol. 2008; 79 (1): 144—9. PMID: 18166104
  45. Inagaki S., Onishi S., Kuramitsu H.K., Sharma A. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by Tannerella forsythia. Infect Immun. 2006; 74 (9): 5023—8. PMID: 16926393
  46. Maiden M.F., Pham C., Kashket S. Glucose toxicity effect and accumulation of methylglyoxal by the periodontal anaerobe Bacteroides forsythus. Anaerobe. 2004; 10 (1): 27—32. PMID: 16701497
  47. Settem R.P., Honma K., Shankar M., Li M., LaMonte M., Xu D., Genco R.J., Browne R.W., Sharma A. Tannerella forsythia-produced methylglyoxal causes accumulation of advanced glycation endproducts to trigger cytokine secretion in human monocytes. Mol Oral Microbiol. 2018; 33 (4): 292—299. PMID: 29573211
  48. Kato H., Taguchi Y., Tominaga K., Umeda M., Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol. 2014; 59 (2): 167—75. PMID: 24370188
  49. Hieke C., Kriebel K., Engelmann R., Müller-Hilke B., Lang H., Kreikemeyer B. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep. 2016; 6: 39096. PMID: 27974831
  50. Takemoto T., Kurihara H., Dahlen G. Characterization of Bacteroides forsythus isolates. J Clin Microbiol. 1997; 35 (6): 1378—81. PMID: 9163447
  51. Hajishengallis G., Lamont R.J. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000. 2021; 86 (1): 210—230. PMID: 33690950
  52. Olsen I., Potempa J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol. 2014; 6: 6. PMID: 25206939
  53. Jung Y.J., Jun H.K., Choi B.K. Gingipain-dependent augmentation by Porphyromonas gingivalis of phagocytosis of Tannerella forsythia. Mol Oral Microbiol. 2016; 31 (6): 457—471. PMID: 26434368

Received

December 9, 2024

Accepted

February 21, 2025

Published on

April 7, 2025