И.М. Рабинович, профессор

М.В. Снегирев, к.м.н.

С.А. Голубева, аспирант

Отделение кариесологии и эндодонтии ЦНИИС и ЧЛХ, Москва Клиническая эффективность сочетанного применения метода фотодинамической терапии и медицинского озона у пациентов с заболеваниями периодонта

Сейчас достигнуты значительные успехи в изучении вопросов этиологии и патогенеза кариеса и его осложнений. В исследованиях последних лет ведущая роль в развитии данной группы заболеваний отводится микробному фактору [2, 3, 11].

Для проведения успешного эндодонтического лечения, помимо инструментальной обработки системы корневых каналов с последующей трехмерной обтурацией, необходима тщательная антисептическая обработка. Более чем в 60% случаев после успешно проведенной санации корневых каналов у пациентов вновь развиваются клинические и рентгенологические признаки патологии периодонта [16]. Это связано с устойчивостью биопленки корневого канала к воздействию стандартных методов антисептической обработки, что приводит к последующим рецидивам и различным периапикальным осложнениям. Кроме того, в значительном числе случаев при пломбировании корневых каналов врачи вынуждены «запечатывать» микроорганизмы в канале. Группа условно-патогенных видов микроорганизмов St. aureus, C. albicans, E. faecalis и E. coli достаточно часто выделяется при воспалительных заболеваниях пульпы и периодонта. Токсины и ферменты этих микроорганизмов агрессивно воздействуют на ткани пульпы и периодонта, проявляют способность размножаться в монокультуре и выживать в условиях ограничения питательных веществ, а также они резистентны к различным методам медикаментозной обработки корневых каналов [13, 14, 17, 18]. Это обусловлено особенностью жизнедеятельности микроорганизмов

в системе биопленки корневого канала, которая защищает присутствующие в ней микроорганизмы от внешних воздействий и создает благоприятные условия для размножения. Полисахаридный матрикс препятствует проникновению внутрь биопленки антибактериальных веществ, тем самым повышая резистентность микробов к антисептикам. Поэтому для удаления биопленки необходимо сочетание как механического фактора, способного разрушить структуру биопленки, так и дезинфицирующего агента, уничтожающего микроорганизмы [5, 6, 15].

На сегодняшний день в эндодонтической практике в качестве дополнения к стандартным средствам медикаментозной обработки корневых каналов с успехом применяется озонированный физиологический раствор в сочетании с озвучиванием. При совместном использовании озонированного раствора и физических факторов (звуковых и ультразвуковых колебаний) происходит разрушение биоматрикса в биопленке, что делает доступным воздействие озонидов из раствора на микробную флору, не защищенную матриксом биопленки. Ранее было проведено клинико-лабораторное исследование [9], подтверждающее антимикробную эффективность данного метода воздействия на микрофлору корневого канала (табл. 1).

Также в литературе появляются данные об эффективности антибактериального воздействия метода фотодинамической терапии (ФДТ). Суть этого метода заключается в избирательном повреждении патологически измененных клеток и патогенных микроорганизмов за счет накопления ими светочувствительных веществ

CIINICAI DENTISTR

(фотосенсибилизаторов). При последующей активации фотосенсибилизатора светом лазера или светодиодной лампы определенной длины волны происходит фотохимическая реакция, в результате которой молекулярный триплетный кислород превращается в синглетный, с образованием большого количества свободных радикалов, что приводит к гибели бактериальной клетки [10]. Выявленный антибактериальный эффект ФДТ лег в основу использования данного метода в стоматологии, в частности в пародонтологии [4], эндодонтии [12] и при лечении кариеса зубов [1, 8].

Результаты проведенного нами ранее клиниколабораторного исследования [7] доказывают выраженную антибактериальную эффективность метода фотодинамической терапии на микрофлору корневого канала у пациентов с заболеваниями пульпы и периодонта (табл. 2).

Обзор литературы и наш собственный опыт показывают, что при лечении хронического периодонтита даже после тщательного выполнения хемоинструментальной обработки корневого канала, оставшиеся в микроканальцах бактерии и их токсины способствуют дальнейшему развитию деструктивных процессов в тканях периодонта и сенсибилизации организма. Особенно часто это происходит в случаях сложного анатомического строения системы корневых каналов, когда инструментально не представляется возможным выполнить поставленные задачи. В связи с этим этапы эндодонтического лечения деструктивных форм хронического периодонтита преследуют цели не только тщательной инструментальной и медикаментозной обработки всей сложной системы корневых каналов, воздействия на содержимое микроканальцев, но и удаления микроорганизмов в апикально-периапикальной области.

Учитывая выраженное противомикробное действие фотодинамической терапии, а также озонированного физиологического раствора, нами была поставлена задача по изучению клинической эффективности сочетанного применения данных методов на микрофлору корневого канала у пациентов с заболеванием периодонта.

МАТЕРИАЛЫ И МЕТОДЫ

Провели лечение 30 пациентов в возрасте от 19 до 62 лет с заболеванием периодонта, в каждом случае рентгенологически в области верхушки корня зуба отмечался очаг деструкции костной ткани. После проведения адекватной анестезии (инфильтрационной или проводниковой) зуб изолировали с помощью коффердама, препарировали кариозную полость, проводили раскрытие полости зуба и все основные этапы эндодонтической обработки корневых каналов. Медикаментозную обработку корневых каналов проводили с помощью озонированного физиологического раствора, который озвучивали с помощью звукового и ультразвукового эндодонтических наконечников с файлами, четырехкратно по 15-30 с. Промывание проводилось озонированным физиологическим раствором четырехкратно, объем раствора составлял 20 мл.

После этого каждый корневой канал заполнялся фотосенсибилизатором толуидиновым синим. Затем стерильным ручным К-файлом проходили канал на всю рабочую длину для того, чтобы убедиться, что жидкость достигла апикальной трети. Экспозиция в канале составляла 10 с. Фотосенсибилизатор активировался светодиодной лампой «Fotosan» в течение 1 мин в каждом канале. Затем каналы промывали стерильной дистиллированной водой и высушивали. Каналы пломбировали методом латеральной конденсации холодной гуттаперчи с использованием герметика. Полость зуба закрывали временной пломбой и проводили рентгенологический контроль пломбирования корневых каналов.

РЕЗУЛЬТАТЫ

Проведенное лечение пациентов с периодонтитом показало: неприятные ощущения на протяжении 2—3 дней после эндодонтического лечения отмечали 4 пациента, которые предъявляли жалобы на чувство дискомфорта в области леченых зубов и периодически возникающую болезненность при накусывании. Через 21 день после эндодонтического лечения клинические признаки воспаления отсутствовали у всех пациентов.

Таблица 1. Частота выделения микроорганизмов (в %) после проведенного лечения с использованием озонированного физиологического раствора с озвучиванием звуковыми и ультразвуковыми колебаниями

Этап	Actinobacillus actinomycetemcomitans	Bacteriodes forsythus	Prevotella intermedia	Porfyromonas gingivalis	Treponema denticola	
До начала лечения	30,0	70,0	16,7	56,7	36,7	
После лечения	10,0	13,3	0,0	26,7	10,0	

Таблица 2. Частота выделения микроорганизмов (в %) после проведенного лечения с использованием фотодинамической терапии

Этап	Стрептококк н/гем.	Стрептококк зелен.	Эпидермальный стафилококк	Золотистый стафилококк	Бактерии группы кишечной палочки	Энтерококк	Лакто- бактерии	Кандида
До начала лечения	61,5	92,3	84,6	0,0	15,4	61,5	0,0	23,1
После лечения	33,4	6,7	46,2	0,0	0,0	22,3	0,0	0,0

КЛИНИЧЕСКАЯ

Рис. 1. Рентгенограмма зуба 2.1 до лечения, диагноз: апикальная гранулема

Рис. 2. Определение рабочей длины корневого канала во время повторного эндодонтического лечения

При рентгенологической оценке состояния периапикальной области через 3 мес после лечения ни в одном случае не было зафиксировано полного восстановления структуры костной ткани. У 11 зубов в периапикальной зоне определялось частичное восстановление костной ткани, у остальных 19 зубов размеры очагов деструкции оставались без изменений.

При обследовании через 6 мес пациенты не предъявляли субъективных жалоб, боль отсутствовала, дискомфорт не определялся, перкуссия зубов была отрицательной, в области переходной складки изменения не обнаружены, то есть ни в одном случае не было отмечено

Рис. 3. Обтурация корневого канала зуба 2.1, состояние сразу после лечения

Рис. 4. Состояние через 6 мес после лечения. Отмечается четкая тенденция к восстановлению костной структуры

отрицательной динамики. У 6 пациентов было зафиксировано полное восстановление строения костной ткани в периапикальной области. По рентгенограммам в области 17 зубов произошло уменьшение очагов деструкции костной ткани в области верхушек корней. В 7 случаях размеры очагов деструкции костной ткани не изменились, эти зубы оставлены для дальнейшего динамического наблюдения (рис. 1—6).

Через 12 мес были выявлены аналогичные результаты. При рентгенологическом обследовании зубов, у которых ранее произошло уменьшение очагов деструкции, выявлено полное восстановление

Рис. 5. Рентгенограмма зуба 2.6. Диагноз: anuкальная гранулема. В дистальном канале проецируется анкерный штифт, небный канал эдодонтически не пролечен, в медиальном канале прослеживаются следы пломбировочного материала. Отмечается апикальная гранулема в области медиального корня

Рис. 6. Рентгенограмма зуба 2.6 через 6 мес после комплексного эндодонтического лечения. Прослеживается четкая тенденция к восстановлению костной структуры

Рис. 7. Рентгенограмма зубов 4.2 и 4.3. Диагноз: корневая киста

Рис. 8. Рентгенограмма зубов 4.2 и 4.3 через 12 мес после комплексного эндодонтического лечения. Отмечается практически полное восстановление периапикальных структур

C L I N I C A L D E N T I S T R

костной ткани. В оставшихся 7 случаях динамика оставалась на прежнем уровне (рис. 7, 8).

выводы

Таким образом, исходя из полученных клинико-лабораторных и рентгенологических данных, можно

заключить, что недостаточная эффективность традиционных методов медикаментозной обработки корневых каналов говорит о необходимости использования дополнительных противомикробных средств при лечении больных с заболеваниями периодонта, что дает основание применения данной методики в клинической практике врача-стоматолога.

ЛИТЕРАТУРА:

- **1. Величко И.В.** Фотодинамическая терапия при лечении кариеса зубов: Автореф. дис. ... к.м.н. М., 2011. 20 с.
- **2.** Давыдова Т.Р., Карасенков Я.Н., Хавкина Е.Ю. К проблеме дисбиоза в стоматологической практике. Стоматология. 2001; 2: 23—4.
- **3. Дмитриева Н.А.** Сравнительная оценка антимикробного действия некоторых антисептиков, применяемых при обработке корневых каналов. *Клин. стоматол.* 1997; 3: 8—11.
- 4. Кречина Е.К., Ефремова Н.В., Маслова В.В. Патогенетическое обоснование лечения заболеваний пародонта методом фотодинамической терапии. Стоматология. 2006; 4 (85): 20—5.
- **5. Петрикас А.Ж.** Критерии качества эндодонтического лечения и «да» или «нет» резорцин-формалиновому методу. *Новое в стоматологии*. 1999; 1: 3—10.
- **6. Пименов А.Б.** Клинико-лабораторное обоснование нового подхода к медикаментозной обработке корневых каналов: Автореф. дис. . . к.м.н. М., 2003. 22 с.
- 7. Рабинович И.М., Дмитриева Н.А., Голубева С.А. Оценка эффективности антимикробного воздействия метода фотодинамической терапии на микрофлору корневого канала у пациентов с заболеваниями пульпы и периодонта. Эндодонтия today. 2013; 1: 26—9.
- **8.** Рабинович И.М., Щербо С.Н., Величко И.В. Динамика изменения микрофлоры кариозной полости после применения фотодинамической терапии. Клин. стоматол. 2010; 4: 72—4.
- **9. Снегирев М.В.** Клинико-лабораторное обоснование применения медицинского озона при лечении пульпита и периодонтита: Автореф. дис. . . . к.м.н. М., 2010. 28 с.

- **10. Странадко Е.Ф.** Механизмы действия фотодинамической терапии. *Рос. онкол. журн.* 2000; 4: 52—6.
- **11.** Bonsor S.J., Nichol R., Reid T.M., Pearson G.J. Альтернативный режим дезинфекции корневых каналов. Стоматолог-практик. 2009; 1 (175): 16—21.
- **12.** Bonsor S.J., Nichol R., Reid T.M., Pearson G.J. Microbiological evaluation of photo-activated disinfection in endodontics (an in vivo study). Br. Dent. J. 2006; 200 (6): 337—41
- 13. Cardoso M.G., de Oliveira L.D., Koga-Ito C.Y., Jorge A.O. Effectiveness of ozonated water on Candida albicans, Enterococcus faecalis, and endotoxins in root canals. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008; 105 (3): 85—91.
- 14. Estrela C., Silva J.A., de Alencar A.H., Leles C.R., Decurcio D.A. Efficacy of sodium hypochlorite and chlorhexidine against Enterococcus faecalis a systematic review. J. Appl. Oral Sci. 2008; 16 (6): 364—8.
- **15. Joffe E.** Противоречия в эндодонтии. *Новое в стоматологии.* 2001; 5: 35—8.
- **16. Ostavik D., Pitt-Ford T. R.** Essential endodontology. Prevention and treatment of apical periodontitis, 2nd ed. Blackwell Sciences, Hamilton-London, 2008.
- *17. Saleh I.M., Ruyter I.E., Haapasalo M.* Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. *Int. Endod. J.* 2004; 37: 193—8.
- 18. Valera M.C., da Rosa J.A., Maekawa L.E., de Oliveira L.D., Carvalho C.A., Koga-Ito C.Y., Jorge A.O. Action of propolis and medications against Escherichia coli and endotoxin in root canals. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010; 110 (4): e70-4.